Mass General Brigham Mass Eye and Ear

Novel Pipette Based Capsule Processing Methods for Epoxy, Glycol Methacrylate, and Methyl/Butyl **Methacrylate Resins with Mouse Tissue That Reduce Processing Volume and Time.**

Philip Seifert HTL(ASCP), Xinyao Hu, Bianai Fan and Darlene A. Dartt, PhD, Schepens Eye Research Institute Morphology Core

Background

The mPrep/S capsules (Microscopy Innovations) are customized pipette tips with screen inserts designed for tissue sizes of ~1mm3 to fully process and embed in a fixed orientation for various electron microscopy applications (1). Chemical fixation and embedding is diffusion limited, by using capsules and pipette-propelled reagent exchanges, rapid processing can be achieved by accelerating diffusion of reagents/solutions into tissue specimens with repeated directed fluid flow (1). Capsule processing methods were developed for mouse ocular and mineralized bone for histology and transmission electron microscopy (TEM) applications and compared to conventional manual and carousel processed methods.

Methods

The novel methods tested enable processing larger sized tissues (~3mm diameter) including whole, anterior or posterior segments of mouse eyes within a single capsule that use 75% less reagents and time. Samples were fixed with; 1/2 Karnovsky's fixative (mouse ocular posterior segment, optic nerve[ON]), mod. Davidson's (mouse whole eye), or 10% NBF (mouse femur) for 48 hours then loaded into capsules using the mPrep/S workstation to screen pinch orient (ON) or secure unoriented. A programable electronic motor-assisted 12x 300uL- multi-channel pipette (VWR #10827-936) was utilized to process and embed into HR Technovit 7100 Glycol Methacrylate (GMA), methyl methacrylate/butyl methacrylate (MBMA, EMS #14520) and EMBED812 epoxy resin (#14120) using processing protocols listed in tables 1-4. Capsule processed tissue embedded in GMA, MBMA and Epoxy resins were sectioned for histological staining including H&E, toluidine blue, osmium-paraphenylenediamine (PPD), Von Kossa and TEM imaged. Ultrathin sections (80nm) were post-grid stained with uranyl acetate and Sato's lead stain (2) and imaged on a FEI Tecnai G2 Spirit TEM @80KV with a AMT XR41 digital camera. PPD stained semithin sections were imaged using a Leica SP8 confocal microscope and axons quantified using ImageJ-FIJI AxoNet software (3). Stained slide scanned micrographs (Hamamatsu Nanozoomer) and TEM images from capsule processed samples were compared to conventional processed using the EMS Lynx2 EM carousel processor or manual processing.

Ben Perspect Find min Seco Seco </th <th>Table 1.</th> <th colspan="2">Table 1. Eye- Embed812 Epoxy</th> <th></th> <th>Table 2.</th> <th>Optic Nerve- E</th> <th>Embed812</th> <th>Epoxy</th> <th>Table 3.</th> <th>Mouse Ey</th> <th>e- GMA</th> <th></th> <th>Table 4.</th> <th>Mouse Fe</th> <th>mur- MBM</th> <th>A</th>	Table 1.	Table 1. Eye- Embed812 Epoxy			Table 2.	Optic Nerve- E	Embed812	Epoxy	Table 3.	Mouse Ey	e- GMA		Table 4.	Mouse Fe	mur- MBM	A
Image: 1 (Concot: 100) Concot:	Step	Reagent	Fluid mix	Time	Step	Reagent	Fluid mix	Time	Step	Reagent	Fluid mix	Time	Step	Reagent	Fluid mix	Time
2 Pic Rimes 2 (Cac) 100 3 2 FF Rimes 2 (Cac) 100 3 2 Emarci (Cac) 100 3 4 2 Emarci (Cac) 100 10 4 8 8 100 100 10 4 8 8 100 100 10 4 8 5 8 100 100 10 10 100 <t< td=""><td>1</td><td>Fix Rinse 1 (Caco. Buffer)</td><td>100</td><td>(min) 3</td><td>1</td><td>Fix Rinse 1 (Caco Buffer)</td><td>100</td><td>(min) 3</td><td>1</td><td>Rinse (DI</td><td>100</td><td>(min) 10</td><td>1</td><td>25% Ethanol</td><td>100</td><td>(min) 10</td></t<>	1	Fix Rinse 1 (Caco. Buffer)	100	(min) 3	1	Fix Rinse 1 (Caco Buffer)	100	(min) 3	1	Rinse (DI	100	(min) 10	1	25% Ethanol	100	(min) 10
a PN CACO 4 in Buffer 600 90 3 PN CACO 4 in Buffer 100 3 4 PN CACO 4 in Buffer 100 3 5 PN CACO 4 in Buffer 100 3 <td>2</td> <td>Fix Rinse 2 (Caco. Buffer)</td> <td>100</td> <td>3</td> <td>2</td> <td>Fix Rinse 2 (Caco. Buffer)</td> <td>100</td> <td>3</td> <td>2</td> <td>25% Ethanol</td> <td>100</td> <td>10</td> <td>2</td> <td>50% Ethanol</td> <td>100</td> <td>10</td>	2	Fix Rinse 2 (Caco. Buffer)	100	3	2	Fix Rinse 2 (Caco. Buffer)	100	3	2	25% Ethanol	100	10	2	50% Ethanol	100	10
4 Hinse 1 (Case) (Case), Hirder) 100 3 4 (Pinne 1) (Case), Hirder) 100 3 4 (Pinne 2) (Case), Hirder) 100 3 5 Pinne 2 (DI vater) 100 3 6 Pinne 1 vater) 100 3 6 Pinne 1 Pinne 100 10 5 Pinne 1 (DI Vater) 100 3 6 Pinne 100 10 6 Pinne 1 (DI Vater) 100 3 6 Pinne 100 10 6 Pinne 1 (DI Vater) 100 3 9 25% (MA 100 10 6 Pinne 1 (DI Vater) 100 3 9 25% (MA 200 15 11 100 MMAA 200 10 75% Ehanol 100 3 10 75% Ehanol 100 3 10 25% (MA 200 15 11 MMAA 400 MMAA	3	2% OsO4 in Buffer	600	90	3	2% OsO4 in Buffer	600	90	3	50% Ethanol	100	10	3	75% Ethanol	100	10
5 Rines 2 (Di valet) 100 3 5 $\frac{99\%}{water}$ 100 10 5 $\frac{99\%}{water}$ 100 10 5 $\frac{99\%}{water}$ 100 10 6 $\frac{99\%}{water}$ 100 10 3 6 $\frac{99\%}{water}$ 100 10 6 $\frac{100\%}{water}$ 100 3 7 $\frac{100\%}{water}$ 100 10 6 $\frac{100\%}{water}$ 100 3 7 $\frac{100\%}{water}$ 100 10 7 $\frac{100\%}{water}$ 100 3 7 $\frac{100\%}{water}$ 100 10 8 $\frac{100\%}{water}$ 100 10	4	Rinse 1 (Caco. Buffer)	100	3	4	Rinse 1 (Caco. Buffer)	100	3	4	75% MBMA	100	10	4	95% Ethanol	100	10
6 2% Urany Acata - 600 90 6 Filter 3 (D) water 100 3 6 Physical Content of the second of	5	Rinse 2 (DI water)	100	3	5	Rinse 2 (DI water)	100	3	5	95% Ethanol	100	10	5	95% Ethanol	100	10
7 Binse 4 (Di water) 100 3 7 100% 100 100 100 100 100 100% <th1< td=""><td>6</td><td>2% Uranyl Acetate in DI Water</td><td>600</td><td>30</td><td>6</td><td>Rinse 3 (DI water)</td><td>100</td><td>3</td><td>6</td><td>95% Ethanol</td><td>100</td><td>10</td><td>6</td><td>100% Ethanol</td><td>100</td><td>10</td></th1<>	6	2% Uranyl Acetate in DI Water	600	30	6	Rinse 3 (DI water)	100	3	6	95% Ethanol	100	10	6	100% Ethanol	100	10
8 25% Ethanol 100 3 8 100% 100 10 8 100% 100 9 50% Ethanol 100 3 9 50% Ethanol 100 3 9 25% GMA 200 15 9 25% BMA 200 15 9 25% BMA 200 15 10 50% BMA 200 15 11 75% BMA 200 15 11 75% BMA 200 15 10 50% BMA 100 15 100% BMA 100 16 100% BMA 100 16 100% BMA 100 16 100% BMA 100 16 100% BMA 100 100 </td <td>7</td> <td>Rinse 4 (DI water)</td> <td>100</td> <td>3</td> <td>7</td> <td>Rinse 4 (DI water)</td> <td>100</td> <td>3</td> <td>7</td> <td>100% Ethanol</td> <td>100</td> <td>10</td> <td>7</td> <td>100% Ethanol</td> <td>100</td> <td>10</td>	7	Rinse 4 (DI water)	100	3	7	Rinse 4 (DI water)	100	3	7	100% Ethanol	100	10	7	100% Ethanol	100	10
9 50% Ethanol 100 3 9 50% Ethanol 100 3 9 25% GMA 200 15 9 28% MA 200 10 75% Ethanol 100 3 10 75% Ethanol 100 3 10 50% GMA 200 15 10 50% MA 200 11 95% Ethanol 100 3 11 95% Ethanol 100 5 12 100% MA 200 15 11 75% MA 200 12 95% Ethanol 100 5 12 95% Ethanol 100 5 13 100% MA 200 15 12 100% MA 13 100% Ethanol 100 5 13 100% Ethanol 100 10 14 100% Ethanol 100 3 14 100% MA 14 100	8	25% Ethanol	100	3	8	25% Ethanol	100	3	8	100% Ethanol	100	10	8	100% Ethanol	100	10
10 75% Ethanol 100 3 10 75% Ethanol 100 3 11 50% GMA 200 15 10 MGMA 200 11 95% Ethanol 100 3 11 95% Ethanol 100 3 11 75% GMA 200 15 11 MGMA 200 12 95% Ethanol 100 5 12 95% Ethanol 100 5 12 100% 200 15 12 100% 13 100% Ethanol 100 5 13 100% Ethanol 100 5 13 100% 400 15 13 100% MMA 400 14 100% Ethanol 100 1 14 100% Ethanol 100 3 14 100% MMA 400 15 100% Ethanol 100 3 15 100% Ethanol 100 3 16 Propylene Cxide (PO) 10 3 15 100% MMA 400 16 Propylene Cxide (PO) 100 3 16 Propylene Cxide (PO) 100 <td< td=""><td>9</td><td>50% Ethanol</td><td>100</td><td>3</td><td>9</td><td>50% Ethanol</td><td>100</td><td>3</td><td>9</td><td>25% GMA</td><td>200</td><td>15</td><td>9</td><td>25% MBMA</td><td>200</td><td>15</td></td<>	9	50% Ethanol	100	3	9	50% Ethanol	100	3	9	25% GMA	200	15	9	25% MBMA	200	15
11 95% Ethanol 100 3 11 95% Ethanol 100 3 11 75% GMA 200 15 11 $\frac{75\%}{MMA}$ 200 12 95% Ethanol 100 5 12 95% Ethanol 100 5 12 100% 200 15 12 100% 13 100% Ethanol 100 5 13 100% Ethanol 100 5 13 100% 400 15 13 100% 400 14 100% Ethanol 100 5 13 100% Ethanol 100 5 13 100% 400 15 13 100% 400 15 100% Ethanol 100 3 15 100% Ethanol 100 3 16 100 3 16 100 3 16 100 3 16 100 3 16 100 3 16 100 3 16 100 3 16 100 3 17 16 100 17 18 100% 18 100% 100 1	10	75% Ethanol	100	3	10	75% Ethanol	100	3	10	50% GMA	200	15	10	50% MBMA	200	15
12 95% Ehanol 100 5 12 96% Ehanol 100 5 12 $\frac{100\%}{0MA}$ 200 15 12 $\frac{100\%}{0MA}$ 400 13 100% Ethanol 100 5 13 100% Ethanol 100 5 13 100% 400 15 13 100% 14 100% Ethanol 100 10 14 100% Ethanol 100 10 14 $\frac{100\%}{0MA}$ $$	11	95% Ethanol	100	3	11	95% Ethanol	100	3	11	75% GMA	200	15	11	75% MBMA	200	15
13 100% Ethanol 100 5 13 100% Ethanol 100 5 13 100% Model 400 15 13 100% Model 400 14 100% Ethanol 100 10 14 100% Ethanol 100 14 100% Ethanol 100 14 100% Model 16 116 16 16	12	95% Ethanol	100	5	12	95% Ethanol	100	5	12	100% GMA	200	15	12	100% MBMA	400	15
14 100% Ethanol 100 11 100% Ethanol 100 10 11 $\begin{bmatrix} 100 \\ 00 \\ 0tr} \\ 0tr} \\ \begin{bmatrix} 00 \\ 0tr} \\ 0tr} \\ \begin{bmatrix} 00 \\ 0tr} \\ 0tr} \\ \end{bmatrix}$ 24 hours 14 $\begin{bmatrix} 100 \\ 0tr} \\ 0tr} \\ 0tr} \\ \begin{bmatrix} 00 \\ 0tr} \\ 0tr} \\ \end{bmatrix}$ 100 10 10 11 100% Ethanol 100 3 14 $\begin{bmatrix} 100 \\ 0tr} \\ 0tr} \\ 0tr} \\ \begin{bmatrix} 00 \\ 0tr} \\ 0tr} \\ \end{bmatrix}$ 24 hours 14 100% MMM 400 15 100% Ethanol 100 3 15 100% Ethanol 100 3 0 Image: Constant of the constant of t	13	100% Ethanol	100	5	13	100% Ethanol	100	5	13	100% GMA	400	15	13	100% MBMA	400	15
15 100% Ethanol 100 3 15 100% Ethanol 100 3 16 100 3 16 Propylene Oxide (PO) 100 3 17 Propylene Oxide (PO) 100 3 17 Propylene Oxide (PO) 100 3 17 Propylene Oxide (PO) 100 15 100% Eboxy in PO 100 15 18 25% Epoxy in PO 100 15 16 Image: PO	14	100% Ethanol	100	10	14	100% Ethanol	100	10	14	100% GMA Polymeriz e (External Mold)	(External Mold) RT Cure	24 hours	14	100% MBMA	400	15
16 Propylene Oxide (PO) 100 3 16 Propylene Oxide (PO) 100 3 3 16 100% Oxide (PO) 400 17 Propylene Oxide (PO) 100 3 17 Propylene Oxide (PO) 100 3 25% 5% 5% 100 3 3 100 15 100 3 100 15 100 3 17 MBM w/ Oxide (PO) 100 15 100 3 100 15 100 3 17 MBM w/ Oxide (PO) 100 15 100 100 15 100 100 15 100 100 15 100 100 15 100	15	100% Ethanol	100	3	15	100% Ethanol	100	3					15	100% MBMA	400	15
17 Propylene Oxide (PO) 100 3 17 Propylene Oxide (PO) 100 3 18 17 100% (External mold) 100 (External mold) 100 13 17 100% (External mold) 17 100% (External mold) 17 100% (External mold) 17 100% (External mold) 100% (External mold) 18 25% (Epoxy in PO 100 15 18 25% (Epoxy in PO 100 15 18 25% (Epoxy in PO 100 15 100 15 100 15 100 15 100 15 100 15 100 15 100 15 100 15 100 15 100 15 100 15 100 15 100 15 100 15 100 15 100 15 100 100 15 100 100 15 100 100 15 100 100 15 100 100 100 100 15 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10	16	Propylene Oxide (PO)	100	3	16	Propylene Oxide (PO)	100	3					16	100% MBMA w/ catalyst solution	400	15
18 25% Epoxy in PO 100 15 18 25% Epoxy in PO 100 15	17	Propylene Oxide (PO)	100	3	17	Propylene Oxide (PO)	100	3					17	100% MBMA w/ catalyst solution	(External mold) 65°C Oven Cure	24 hours
19 50% Epoxy in PO 100 15 19 50% Epoxy in PO 100 15 100 100 15 100 15 100 20 100 100 100 100 100 100 100 20 100 100 100 100 100 100 100 20 100 100 100 100 100 100 100 100 100	18	25% Epoxy in PO	100	15	18	25% Epoxy in PO	100	15								
20 75% Epoxy in PO 100 15 20 $\frac{75\% Epoxy in}{PO}$ 100 15 Image: constraint of the point of the poin	19	50% Epoxy in PO	100	15	19	50% Epoxy in PO	100	15								
21 100% Epoxy 100 30 21 100% Epoxy 100 15 Image: constraint of the second s	20	75% Epoxy in PO	100	15	20	75% Epoxy in PO	100	15								
22 100% Epoxy 100 30 22 100% Epoxy 100 20 Image: Capsule processing 22 100% Epoxy 100 20 Image: Capsule processing 100 20 100 20 Image: Capsule processing 24 hours 20 Image: Capsule processing 24 hours 100	21	100% Epoxy	100	30	21	100% Epoxy	100	15								
23100% Epoxy(Capsule) 60°C Oven Cure24 hours23100% Epoxy(Capsule) 60°C Oven Cure24 hours24 hours </td <td>22</td> <td>100% Epoxy</td> <td>100</td> <td>30</td> <td>22</td> <td>100% Ероху</td> <td>100</td> <td>20</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	22	100% Epoxy	100	30	22	100% Ероху	100	20								
Steps 1-22 Time (hours) Time (hours) Time (hours) Steps 1- 13 Time (hours) Time (hours) Time (hours) Time (hours) Steps 1- 16 Carousel Processing 27.2 Carousel Processing 26.7 Manual Processing 18.1 Manual Processing Capsule Processing 4.7 Capsule Processing 3.8 Capsule Processing 2.6 Capsule Processing	23	100% Epoxy	(Capsule) 60°C Oven Cure	24 hours	23	100% Epoxy	(Capsule) 60°C Oven Cure	24 hours								
Carousel Processing27.2Carousel Processing26.7Manual Processing18.1Manual ProcessingCapsule Processing4.7Capsule Processing3.8Capsule Processing2.6Capsule Processing		Steps 1-22		Time (hours)		Steps 1-22		Time (hours)		Steps 1- 13		Time (hours)		Steps 1- 16		Time (hours)
Capsule Processing 4.7 Capsule Processing 3.8 Capsule Processing 2.6 Capsule Processing	Carousel Processing			27.2	Caro	ousel Processing		26.7	Manual Processing		essing	18.1	Manu	Manual Processing		26.8
	Capsule Processing			4.7	Cap	Capsule Processing		3.8	Capsu	Capsule Processing		2.6	Capsu	Capsule Processing		

Methods

Figure 1a. Oriented ON (arrow) and **1b**, Posterior eye segment (arrow) unoriented in capsules loaded onto a 12-channel electronic pipette (P) with filter couplers (1c) for exchanges and mixing of reagents prepared in 96 well plate (W). The pipette was manually moved on boom stand to trigger the programmed liquid aspiration/mixing/displacement through each reagent step. Epoxy resin embedded ON samples oriented in capsules (1d) for ultramicrotomy with surface trimming then microtome sectioned using a HISTO diamond knife (1e).

Figure 2. Carousel (a,b) & Capsule (c,d) epoxy processed & embedded mouse eye posterior segment, semithin section, toluidine blue. Inner and outer retina is preserved with outer segments (OS) and retinal pigmented epithelium (RPE, arrow) intact. Carousel (e,f) & Capsule (g,h) TEM of outer retina display optimal preservation of cell membranes and organelles (RPE= retinal pigmented epithelium, OS = outer segments, M=mitochondria, *= Bruch's membrane) with similar electron contrast.

Figure 3. Carousel (a,b) and Capsule (c,d) epoxy processed & embedded ON. TEM reveals equivalent preservation and contrast of axoplasm, organelles and myelin (arrow). Semithin 1 µm PPD stain (**a,b,d,e**), scale bars= 50 µm (**a,d**), 3 µm (**b,e**), TEM, uranyl acetate & Sato's lead stain, scale bars= 0.5 µm (**c,f**).

Figure 4. Graphs of ImageJ-FIJI AxoNet analysis of ON myelinated retinal ganglion axons revealed no significant difference via T-TEST (NS) in ON axon density (a), area (b), and #axons detected in each ON between carousel and capsule processed samples. ON samples were obtained within 1mm from each other towards the proximal end.

Results

Figure 5. Manual (a,b) and Capsule (c,d) GMA processed & embedded mouse eyes with identical preservation of retinal layers. 3-um sections, Gill's#2 H&E stained.

Figure 6. Capsule MBMA processed & embedded mineralized mouse femur head. Marrow tissue and calcium mineral is preserved, 2-um semithin, Von Kossa calcium (a), Gill's#2 H&E (b,c) stain.

Conclusion

- electron microscopy applications should be investigated with mouse ocular and other tissue samples.
- electron microscopy tissue processing.

References

1. Thomas E Strader *et al.* (2018) Automated Rapid Preparation of Tissue Specimens for TEM Pathology, *Microscopy and Microanalysis*, 24:S1, 1284-1285.

2. Philip Seifert (2017) Modified Hiraoka TEM grid staining apparatus and technique using 3D printed materials and gadolinium triacetate tetrahydrate, a nonradioactive uranyl acetate substitute, Journal of Histotechnology, 40:4, 130-135.

3. Ritch, M. D., et al (2020). AxoNet: A deep learning-based tool to count retinal ganglion cell axons. Scientific reports, 10:1, 8034.

Acknowledgements, Funding & Disclosure

Supported by NIH National Eye Institute Core Grant P30EY003790. Thanks to the Meredith Gregory Ksander Laboratory for the optic nerve samples, supported by NIH National Eye Institute R01EY032762-02. Special Thanks to the Anatomical Pathology Patient Interest Association for the NSH Travel Poster Scholarship. License agreement between Schepens Eye Research Institute (MGB) & Electron Microscopy Sciences for the Modified Hiraoka TEM Grid Staining Kit IP. The content is solely the responsibility of the presenter and does not necessarily represent the official views of the National Institutes of Health.

• There were no detectable differences in tissue preservation, staining, or processing related artifacts (e.g. shrinkage, compression) in any of the tissue processed into the resins.

• Enhanced infiltration from the application of capsule processing methods decreased times using minimal solution volumes of 80 uL/solution for each capsule compared to 500 uL/solution for a sample with manual or EMS Lynx 2 carousel processing (2). Capsule processing reagent & solution costs were ~25% the costs of carousel processing.

• Use of capsules with pipette propelled mixing delivers accelerated diffusion of reagents and embedding media into specimens with repeated directed fluid flow that decreases both processing volume and time compared to manual or carousel processing. • Further protocol development allowing automated capsule tissue processing for histology and

• A variety of embedding media resins may be used with mPrep/s capsules for histology and